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In this work the normalized dictionary distance (NDD) is presented and investigated. NDD is a similarity
metric based on the dictionary of a sequence acquired from a data compressor. A dictionary gives signif-
icant information about the structure of the sequence it has been extracted from. We examine the per-
formance of this new distance measure for color image retrieval tasks, by focusing on three parameters:
the transformation of the 2D image to a 1D string, the color to character correspondence, and the image
size. We demonstrate that NDD can outperform standard (dis)similarity measures based on color histo-
grams or color distributions.
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1. Introduction

Over the last years the tremendous growth of the available
information, stored in digital form raises many demanding issues.
The task of retrieving relevant information clearly indicates the
need for effective tools in data mining. When applied to 2D images
these tools, fall into four different categories. There are schemes
based on (i) the histogram, (ii) first and/or second order statistics,
(iii) templates or (iv) compression. It is obvious that the operation
and performance of each system depends critically on the feature
extraction method used, while each feature reveals or hides some
of the image characteristics.

The need of a universal similarity metric that minimizes every
computable distance lead the authors in [1] to introduce the nor-
malized information distance, based on the noncomputable notion
of Kolmogorov complexity. On the same spirit, a parameter free,
universal similarity distance, the normalized compression distance
(NCD), computed from the lengths of compressed data files (singly
and in pair wise concatenation) is introduced in [2], while a param-
eter free data mining algorithm based on the same theory [3] cal-
culates the (dis)similarity of two sequences just by compressing
them. Apart from these compression based similarity measures
that have been proposed and applied, other researchers who
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worked in this area have included entropy based measures [4] or
discriminant functions [5].

It is shown in [2] that for genomic sequences, music and litera-
ture, it is possible to find the (dis)similarities using the distance
calculated from the compression of an object. Those sequences
can be thought as 1D, because they have specific starting point
as well as a distinct ending point. Informally one can think of the
dimension of an object as the number of directions possible when
describing it fully from a starting point. For a text, we say it is 1D,
as there is a beginning, an end, and the words in between are in a
particular order in one direction. Unfortunately, retrieval using
compression does not trivially extend to higher dimensions. All
available compressors deal with 1D sequences, so one has to trans-
late the high dimensionality data in linear fashions. For some high
dimensional data is difficult to express reasonably in fewer dimen-
sions. For a 2D image the first problem occurs in the determination
of the starting point. The most common starting point is the upper
left pixel of the image. After this we have to choose which nearest
pixel we should take next; to the right or below the first pixel. Fur-
thermore, the third pixel should be chosen among pixels that are
closer to the first pixel and those that are closer to the second
one, and so on. Either choice we make, we have misrepresented
the closeness of all the pixels in question.

While one of the most desirable properties of the compres-
sion based (dis)similarity measures is the ability to reveal
(dis)similarities without any prior knowledge of the sample
space, it is necessary to relax this condition when it comes to
image processing. In [7] the authors limited their investigation
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to black and white images. In [8,9], the computation of the com-
pression distance is calculated over gray scaled images, while in
[10] their proposed method is evaluated over gray scaled tex-
tures. Moreover thorough examination in [11] shows that a
choice of compression algorithm implies a specific, definable
representation of the data within a feature space. Compression
algorithms may be categorized according to the type of data
(text, sound, and image) they are designed to compress. Most
compression algorithms use two different approaches: one which
generates a statistical model for the input data (bzip, LZ77, and
LZW), and another which maps the input data to bit (Huffman
encoding, and arithmetic encoding).

Another crucial problem is the size of the sequences to be com-
pressed. In [12] experimental results obtained by the use of various
compressors, reveal that the NCD is skewed by the size of the ob-
jects, independently of their type. For sequence sizes smaller than
certain values (related to the block and window sizes in the com-
pressors), the distance between two identical sequences is usually
quite small, which proves that the NCD is a good tool for this pur-
pose. However, for larger sizes, when the inner limitations of the
compressors are violated, obviously the distance between two
identical sequences grows to very high values, making the NCD
practically unusable.

In this work we focus on retrieving color images using com-
pression. We introduce a new similarity metric that is based on
the dictionary of each image sequence. The words of each dictio-
nary are subsequences of the initial sequence, while each word
consists of a different succession of color characters. So the dic-
tionary of an image captures in each character the color informa-
tion at pixel level, while the succession order of those colors on
the image plane is encoded in each word. Thus the problem of
similarity between two color images can be translated to that
of the similarity between the corresponding dictionaries. In order
to produce the dictionary of each image we have to transform
the 2D array to a 1D string using row by row or column by col-
umn scanning. The color information is embedded in the pro-
duced sequence by quantizing the RGB plane into cubes, where
each cube is associated with a different color character.

The rest of the paper is organized as follows. In Section 2, we
survey background and related work, while in Section 3 we present
our framework for image retrieval. Experimental results as long as
conclusions are given in Sections 4 and 5, respectively.

2. Background and related work

In this section we give some background information on the
Kolmogorov complexity. We review some compression based sim-
ilarity metrics which will help us to deploy our proposed method.

2.1. Kolmogorov complexity

Kolmogorov complexity is a measure of randomness of strings
based on their information content. It was proposed to quantify
the randomness of strings and other objects in an objective and
absolute manner. One can think of the Kolmogorov complexity of
an object as its shortest description. Considering this measure, an
object is complex if its shortest description is very long. Essentially,
the Kolmogorov complexity of a file is the length of the ultimate
compressed version of the file.

We can define the Kolmogorov complexity K(x) of a string x as
the length of the shortest program capable of reproducing x on a
universal computer, such as a Turing machine. The conditional Kol-
mogorov complexity K(x|y) of x relative to y is defined similarly as
the length of the shortest program to compute x if y is given as an
auxiliary input to the computation.

2.2. Normalized information distance

The normalized information distance is a similarity metric
based on the concept of Kolmogorov complexity. This metric does
not need any prior knowledge about the object to be tested. It is
based on the information distance E(x,y), introduced in [6].

The information distance defined as the length of the shortest
binary program for the reference universal prefix Turing machine
that, with input x computes y, and vies versa. It is shown that, up
to an additive logarithmic O(log(max{K(x,y),K(y,x)})) term

E(x,y) = max{K(x,y), K(y,x)} (1

It is proved in [6] that the information distance E(x,y) is a metric.
The normalized version of E(x,y), called the normalized informa-
tion distance, is defined as

_ max{K(x,y),K(y,x)}
NIDEY) =" maxc (K (0. K()} @
It too is a metric, and it is universal in the sense that this single
metric minimizes up to a minor additive O(1/max{K(x),K(y)})
term all normalized admissible distances in the class considered

in [1].

2.3. Normalized compression distance

Unfortunately, the Kolmogorov complexity is non computable
in the Turing sense. Thus the NID is computed by some approxima-
tions. The result of approximating the normalized information dis-
tance by the use of a real compressor C is called the normalized
compression distance

Clxy) —min {C(x), C(y)}

NCD,y) = —— {C(x),C(y)} .

where C(x,y) denotes the compressed size of the concatenation of x
and y, C(x) denotes the compressed size of x, and C(y) corresponds
to the compressed size of y. The NCD is a nonnegative number rep-
resenting how different the two sequences are. Smaller numbers
represent more similar sequences.

The calculation of this distance does not require a specific com-
pressor, while for lossless compressors, C(-) = K(-) + k, where k is
unknown and depends on the data and the compressor.

2.4. The dictionary of a sequence

Dictionary based data compressors identify patterns, called
words, of the data and store them in a dictionary. In particular,
it segments a sequence into several distinct subsequences called
words, in a way that each word is the shortest subsequence that
is not previously parsed as word. It is clear that the same word
can appear several times in the dictionary. The number of the
words belonging to a dictionary depends not only on the length
of the initial sequence, but also on the number of the characters
used and the way they are combined into words. Some dictio-
nary coders use a ‘“static dictionary”; one whose full set of
strings is determined before coding begins and does not change
during the coding process. More common are methods where
the dictionary starts in some predetermined state but the con-
tents change during the encoding process, based on the data that
has already been encoded.

In order to understand the dictionary creation process, it is
useful to recall how the LZW compression algorithm [13] works.
The dictionary is formed directly for the incoming sequence. As
the compressor serially examines the sequence, it stores every
unique two-character string into the dictionary table as a code/
character concatenation, with the code mapping to the corre-
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SD(x)

— —.

SD(y)

_» SD(x~y)

SD(xwy)=SD(x)+SD(y)-SD(x~y)

Fig. 1. lllustration of the sequence dictionaries where circle SD(x) represents the
dictionary of sequence x, circle SD(y) represents the dictionary of sequence y and
the total area of the two circles SD(x U y) is the joint dictionary of the two sequences
x and y.

sponding first character. As each two-character string is stored,
the first character is exported. Whenever a previously encoun-
tered string is read from the input, the longest such previously
encountered string is determined, and then the code for this
string concatenated with the extension character (the next
character in the input) is stored in the table. The code for this
longest previously encountered string is outputted and the
extension character is used as the beginning of the next
string.

For a sequence with length n and words with length w, the com-
putational complexity of the dictionary formation is proved to be
O(KlogK), where K = w + n[14].

Fig. 1 illustrates some principal relations of two sequence dic-
tionaries. We will show that sequence dictionary satisfies the fol-
lowing properties:

(1) Idempotency: SD(x Ux) = SD(x), and SD(4) = @, where 1 is
the empty string.

(2) Monotonicity: SD(x Uy) > SD(x).

(3) Symmetry: SD(x Uy) = SD(y Ux).

(4) Distributivity: SD(x Uy) + SD(z) < SD(x U z) + SD(y U z).

e Idempotency. The joint dictionary created by two identical
sequences will be the same dictionary extracted from that
sequence. Also the dictionary of an empty string will be empty.

e Monotonicity. From Fig. 1 we see that SD(x Ny) > 0 (in case that
the two dictionaries are completely unrelated the intersection of
these two disjoint dictionaries will produce an empty set). So
SD(xUy) = SD(x) + SD(y) = SD(x) as SD(y) = 0 (the equality
stands for the empty string).

e Symmetry. One of the basic properties of set theory is
SD(x Uy) = SD(y UX).

o Distributivity. The proof of this property can be found in Appen-
dix A.

3. Dictionary based similarity metric
3.1. The normalized dictionary distance (NDD)

Given two sequences x and y, we define the normalized dictio-
nary distance as follows

SD(x Uy) — min {SD(x),SD(y)} 4)
max {SD(x), SD(y)}

where SD(x) is the sequence dictionary of x, SD(y) is the sequence
dictionary of y, and SD(x U y) is the joint dictionary of the two se-
quences x and y.

For two identical sequences we have NDD(x,x) = 0 (SD(x UX) =
SD(x)), whilst for two sequences with disjoint dictionaries we have
NDD(x,y) =1 (SD(x Uy) = S(x) + S(¥)).

The NDD is unchanged by interchanging x and y in Eq. (4). It is
obvious, as it can been seen in Fig. 1, that SD(x Uy) = SD(y UX),
which leads to NDD(x,y) = NDD(y, X).

If we deploy farther the Eq. (4) (with the help of set properties),
we have

NDD(x,y) =

SD(x) + SD(y) — SD(x Ny) — min{SD(x), SD(y)}

NDD(x,y) = max{SD(x),SD(y)}

While 0 < SD(xNny) < min(SD(x), SD(y)), the NDD is a nonnega-
tive number 0 < NDD < 1 representing how different the two se-
quences are. Smaller numbers represent more similar dictionaries.

The NDD is a normalized admissible distance satisfying the
metric (in) equalities, that is, a similarity metric (see Appendix B).

3.2. Transforming a 2D image to 1D sequence

The first step for the generation of an image dictionary is to con-
vert the image in a 1D sequence. In order to accomplish this we
consider the pixels row by row, and column by column as it is
shown in Fig. 2.

It is obvious that different scanning procedures generate differ-
ent 1D sequence, which generates a different dictionary. Moreover
by reshaping an image in this way we preserve part of the spatial
image information, information that cannot be preserved by histo-
gram based techniques.

3.3. Embedding the color information in the 1D sequence

One of the most challenging tasks in this work was how to
embed the color information in the 1D sequence. Most of the
previews compression based approaches [8-10], discard color

Scanning
procedure

(a) row by row scanning

{b) column by column scanning

Fig. 2. Conversion for 2D to 1D sequence.
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+ 1 _T___;fl"__ 1

(a) 8 cubes

(b) 64 cubes

Fig. 3. Division of RGB space into (a) 8 and (b) 64 cubes.

Fig. 4. Illustration of quantizing the initial image (a) into 8 levels (b) and 64 levels (c).

and compute the (dis)similarity of two images, based on notions
of information distance, computed using intensity values.

Motivated by the 3D structure of the RGB color space, we divide
the RGB plane into 8 and 64 cubes as shown in Fig. 3. In each cube
we assign a character, thus the resulting image sequence will con-
sist of 8 characters in case of 8 cube division, or 64 characters in
case of a 64 cube division. The quantization results are depicted
in Fig. 4.

4. Experimental study
4.1. Data set performance evaluation

The collection of images used to produce the experimental re-
sults presented in this work is part of the Corel Gallery [15]. This
collection consists of D = 1000 still color images of 24 bpp each, gi-
ven in portable pixel map format of sizes [192 x 128] or
[128 x 192] pixels that are pre-assigning into 20 distinct classes
(e.g. cars, views, flowers, airplanes, etc.). Furthermore another 60
images, three for each one of the above classes, were also selected
from the Corel Gallery to construct the Query image data base
Q = 60. The evaluation procedure was run over each Query, and fi-
nally the performance was averaged across all Queries.

In order to evaluate the performance of our proposed meth-
odology, we used the precision (Pr) and recall (Re) quantities
[16]. These quantities were used for comparing our approach,
with several other (dis)similarity measures that are based on
color histograms and color distributions [17-21]. In all cases,
the reported results are averaged scores, referring to the same
set of Query images.

In the following lines we will give a short description of those
measures used for comparison purposes, assuming that Q = {q;}

and D = {d;} are the histograms from a query image Q and a data-
base image D, respectively, each one containing n bins and
ki = 94,

Kullback-Leibler Divergence (KLD): It measures how inefficient,
on average, it would be to code one histogram using the other as
the code-book [17,18]:

din(Q,D) = Z q; logg’:
i=1 !

Jeffrey Divergence (JD): It is a modification of KLD that is symmetric,
numerical stable and robust with respect to noise and number of
bins taken into count [17], given by

n ) d
d D) = log =+ d;log—

0(Q.D) = ) (ailogy! + dilos )
Histogram Intersection (HI): This measure is used for color image re-
trieval in the spatial domain [19] and it is found to be attractive due
toits ability to handle partial matches[18]. For two equal histograms,
the Hl is equivalent to the L, distance. The HI distance is given by

—-1_ E?:] min(qi7di)
Z?:ldi

We have applied HI in 8 bin and 64 bin histograms derived from the
RGB quantization scheme.

2 statistics (2): It is a statistical index showing how likely is for
one distribution to get drawn from the population represented by
the other [17,18], and is given by

dum(Q.D)

k,’

d:(Q.D) =% q"%
i=1 1
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Earth Movers Distance (EMD): This distance is based on the solution
of the transportation problem [18]. It is calculated over the mini-
mum amount of work needed in order to transform one distribution
into the other, normalized by the sum of the costs needed to move
the individual features:

den(Q. D) = %ﬁ’

where g;; is the ground distance between bins ¢; and d;, respectively,
fij is the optimal flow between the two distributions such that the
total cost ), .f; is minimized, subject to some constrains [18].

Multivariate Wald-Wolfowitz Test (ww-test): This measure can
be used to test whether any two given multi-dimensional point
samples are coming from the same multivariate distribution [20].
A minimal spanning tree (MST) is built over all points in R?. Then,
based on the sample identities of the points, a test statistic R is
computed, representing the total number of runs (a consecutive se-
quence of identical sample identities). It is shown that the
quantity:

_ R—-ER]

~ /Var[R]
approaches asymptotically the standard normal distribution. The

E[R] and Var[R] quantities of R depend on the sizes m and n of the
two point samples and can be computed as

E[R}:z—ﬁn+l
and
2mn—-N C-—N+2
x{ N +(N_2)(N_3)[N(Nf1)74mn+2]}

where N = m +n and C is the number of edge pairs sharing a com-
mon node.

Color Coherence Vectors (CCV): This histogram based method
[21] is used for comparing images that incorporate spatial informa-
tion. Each pixel is classified in a given color bucket as either coher-
ent or incoherent, based on weather or not is part of a large
similarly colored region. Considering two images Q and D, together
with their CCV’s G, and Gp let the number of coherent pixels in col-
or bucket i be o and op;, while denote the number of incoherent
pixels as bg; and bp;, respectively. The distance between the two
CCV’s is given by the quantity:

Dccv(Q,D) = Z [(0tqi — oipi)| + | (bgi — bpi)|

i=1

where n is the number of the color buckets used. We have applied
CCV using 8 and 64 color buckets derived from the RGB quantiza-
tion scheme.

4.2. Experimental results

For the introduced methodology, the results are coming from
different settings of the involved parameters, which are the scan-
ning procedure, the color to character mapping, and the sequence
length (image size). In order to construct the image dictionary,
each one of the three RGB vectors is quantized into two levels, pro-
ducing eight distinct cubes everyone associated with a distinct
character. The dictionary of each image sequence is created from
different combination of these characters.

In the case of the color histogram, the only free parameter is the
number of bins used, which was set to 20 for each RGB-channel.

0.75 T T T T T T T T T
0.7 4
088l L
-g .A-I' .............................................................................
:
a
0.6 -
—+#— NDD (row by row, 8 characters)
~e— NDD (column by column, 8 characters)
—— D (x2) = 0.6600
0,55 —= D(ID) = 0.6578 E
....... D =0.
--= D (KLD) = 0.6400
e D (EMD) = 0.6333
---—- D (HI) = 0.6178
— - D(CCV) = 0.4956
0.5]. i Rt Ml wihishuiin S wdiuid Mt Tl st Ml
(] 10 20 30 30 60 70 80 20 100

50
% of iImage

Fig. 5. Precision retrieval results, as a function of image scaling factor for the 10
most similar images. The two top curves correspond to the new dictionary based
technique, for row by row (x) and column by column (-) scanning procedure,
respectively. The dictionary of each image sequence is created using eight
characters. Highest precision achieved by the other dissimilarity measures are
depicted as horizontal lines.

Experimentation with a wide range of binning values gave no sig-
nificant changes in recall performance. Finally for the development
of the Multivariate Wald-Wolfowitz Test [20], 60 pixels were ran-
domly selected from each image.

In Fig. 5 we illustrate retrieval results for the 10 top retrieved
images, along with the corresponding level of precision for each
dissimilarity measure. The NDD was implemented, using an eight
character dictionary derived from a row by row and a column by
column scanning procedure. In order to change the sequence
length we had to resize the original image by nearest neighbor
interpolation. The horizontal lines shown in the same figure indi-
cate the highest precision index that was achieved by the other dis-
similarity measures. It is clear that both NDD procedures perform
better than the other dissimilarity measures. It is also observed
in Fig. 5, that the precision of the proposed system increases along
with image size. The histogram based techniques are empirical
estimates of the image distribution; a feature that is not signifi-
cantly affected by image size and gave no significant deviation
with this change, demonstrating their scale invariant nature. On
the contrary in the proposed NDD methodology, image content is
described more accurately as the length of the sequence increases
and it reaches its maxima for image size beyond the 25% of the
original.

Another interesting point is the fact that the row by row scan-
ning scheme gives better results than the column by column one.
The row by row scanning procedure appears to give a better repre-
sentation of the spatial information contained in an image. In order
to investigate this finding and test if it is related to image aspect
ratio (portrait or landscape), we cropped every image and kept a
centered square window of size [128 x 128], assuming the main
image information is positioned in its center part. Yet, this did
not lead to any significant deviations from our initial observations.

Next, the effect of the character set that was used to produce
the dictionaries is examined. Each one of the three RGB vectors
was divided into four levels to produce 64 distinct cubes. Results
indicate that the quantization of the RGB plane plays a significant
role in the NDD. A more detailed representation of each image,
leads to more accurate description of the image and better retrieval
results. In Fig. 6 it can be seen that the behavior of our proposed
technique boosts up with the use of a 64 character dictionary. At
10% of the image size, the system reached a plateau, and gave no
significant change in its performance by increasing further the im-
age size. The horizontal lines shown in Fig. 6 correspond to the
highest precision index that was achieved by the other measures
considered in this work.
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Fig. 6. Precision as a function of image size, for the 10 most similar images.
Measurements of the two curves correspond to row by row and column by column
pixel scanning, respectively. The dictionary of each image sequence is created using
64 characters. The maximum precisions values of the other examined dissimilarity
measures are depicted as horizontal lines.
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Fig. 7. Precision as a function of bin number, for the 10 most similar images. The
color embedding took place in the HMMD color space. Measurements of the two
curves correspond to row by row and column by column pixel scanning,
respectively.

We also run some tests by first transforming the RGB color
space to the HMMD color space introduced in MPEG-7 [22], and
then quantizing the resulting color space in 32, 64, 128, and 256
levels. Fig. 7 illustrates the results of those tests. It is clear that
the embedding of the color information in the sequence using
the RGB cubes accomplishes better results. Furthermore as we in-
crease the number of color quantization levels we observe that no
significant changes occur in the precision of the system.

Finally, in Fig. 8 the operation of all the different methods under
comparison was evaluated by using the standard Precision versus
Recall diagram. It is observed that the NDD methodology employ-
ing the row by row scanning procedure gives superior results indi-
cating that the representation of image information content is
better by the horizontal scanning procedure.

5. Conclusions

In this work we introduce a novel compression based similarity
metric based on the sequence dictionary. The dictionary can be
easily extracted by available data compressors and contains valu-
able information about the structure of a data sequence. Thus for
any pair of sequences dictionary similarity directly reflects the se-
quence similarity.

1
' ! ! ——NDD(64 characters - row by row scanning)
—8—NDD(8 characters - row by row scanning)
—+—NDD(64 characters - column by column scanning)
0.9+ ——NDD(8 characters - column by column scanning)
——chl square statistic
——Earth Maovers Distance
—+#—Histogram Intersection
0.8 —+—Jolfrey Divergence
—=—Kullback Leibler Divergence
—=—Wald - Wolfowitz test
0.7 —*—Color Coherence Vector
s
2
2
]
8 0.6
&
0.5~ E
0.4~ 1
0.3 E
L s | s | s L L s
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Recall

Fig. 8. Comparison of retrieval performance via the Precision versus Recall diagram
for the different approaches.

The new similarity metric is tested successfully in the color im-
age retrieval problem producing better results than traditional
techniques. The new approach examines deeper the image plane
by exploiting not only color values and the resulting distribution
like histograms do, but also utilizing spatial relationship between
pixels giving a very good description of the local color variation.

Experimental results indicate that when applied in color image
retrieval, the NDD, is affected by the size of the image sequence,
the color to character embedding and the transformation of the
2D image to a 1D sequence. It is observed that as the set of color
characters used for the description of an image as well as image
size increases, the performance of the system reaches a plateau.
Additionally it is also noticed that the row by row scanning proce-
dure captures more efficiently the image spatial information
although we could not provide a viable explanation about this.

Finally as far as computational complexity is concerned, the
most time consuming process of the method is the dictionary for-
mation which is completed in O(K log K) time. The transformation
of the 2D image in a 1D sequence, the embedding of the color infor-
mation in that sequence, and the computation of the NDD is done
in linear time.
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Appendix A. Proof of the distributivity property

The distributivity property is not immediately intuitive. We are
going to saw that the stronger distributivity property

SD(xUyUz)+SD(z) < SD(xUz)+SD(yUz)

holds.
For set theory we have for three sequences x, y, z that
SD(xUyUz) =SD(x) + SD(y) + SD(z) — SD(x ny) — SD(x N z)
—SD(ynz)+SD(xnynz) < SD(xUyUz)
+ SD(z) = SD(x) + SD(y) + 25D(z) — SD(x NYy)
—SD(xnz)—-SD(ynz)+SD(xNynz)

But SD(xUZz) = SD(x) + SD(z)
SD(z) — SD(y N z). So we have

—SD(xnz) and SD(yuz)=SD(y)+
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SD(x Uy Uz) +SD(z2)

=SD(xuz)+SD(yuz)—-SD(xNny)+SD(xnynz)
=SD(xUz)+SD(yuz)— [SD(xNy) —SD(xNynz)]
=SD(xuUz)+SD(yuz)—SD(xnyn[l -2z
=SD(xuz)+SD(yuz)—-SD(xnynz)

< SD(xUz) +SD(yu2z)

as SD(xNynz) =0
Farther more we have SD(x Uy U2)
lead us to

SD(xuUy) + SD(z2)

(z is the complementary set of z).
> SD(xUy) + SD(z), which

<SD(xuUyuUz)+SD(z) < SD(xUZz) +SD(y Uz).

Appendix B. Proof of the triangle inequalities of NDD

Without loss of generality we assume that SD(x)
< SD(z) and x,y,z # 2. This assumption provides

<SD(y)

SD(x) = min(SD(x),SD(y)), SD(x) = min(SD(x),SD(z)),
SD(y) = min(SD(y), SD(2)), SD(y) = max(SD(x), SD(y)),
SD(z) = max(SD(x),SD(z)), SD(z) = max(SD(y), SD(z)).

Since the NDD is symmetrical, there are only three triangle
inequalities that can be expressed by NDD(x,y),NDD(x,z),
NDD(y, z). We will verify them one by one.

(1) NDD(x,y) < NDD(x,z) + NDD(y, z): By distributivity the se-
quence dictionary itself satisfies SD(xUy) + SD(z) < SD(x Uz)+
SD(y U z). Subtracting [SD(x) + SD(y)] from both sides and rewriting,
SD(x Uy) + SD(z) — [SD(x) + SD(y)] < SD(xUz)+SD(y Uz) — [SD(X)+

D(y)] = [SD(xUy) — SD(x)]+ SD(z) — SD(¥) < [SD(x Uz) — SD(x)]+
[SD(y uz) SD(y)]. Dividing both sides by SD(z), we find
SD(xUy)—! + 1-— SD(y < SD(xUz)—SD(x) + SD(yuz)—SD(y) SD(Xﬂy)—min(SD(x),SD(y))

SD X SD(z) SD(z) max(SD(x),SD(y))
o < i mj;{s“&‘if_‘s’&)g?;’“” + P ey = NDD(x,y)
2 < NDD(x,z) + NDD(y,z). We have to prove that

)
< NDD(x,y) 54 + 1 — 554

NDD(x.y)
side we have NDD(x,y) —

Movmg all variables to the left
NDD(x, y) SDW < 0= NDD(x,y)

1-82] - [1- 8] <0 Wobeey [t “"”] < 0. The firs

bracket is always less than or equal to zero, while the second one is
always greater than or equal to zero, thus their product will always
be less than or equal to zero.

(2) NDD(x,z) < NDD(x,y) + NDD(z,y): By distributivity we
have SD(xUz) + SD(y) < SD(xUy) + SD(zUy). Subtracting [SD(x)
+SD(y)] from both sides, rearranging, and dividing both sides

by SD(z) we obtain SD(xLSJé)(;)SD(X) < SD(XL;}];)(;)SD(X) _’_SD(ZLSJ)[/))(—)SD(y) =
SD(xuz)—min(SD(x),SD(z)) < SD(xuy)—min(SD(x),SD(y)) SD(y) SD(zuy)— mm(SD ),SD(y))
max(SD(x),SD(z)) X max(SD(x),SD(y)) SD(z) + max(SD(z),SD(y)) =
NDD(x,z) < NDD(x,y)35% +NDD(z,y). We have to prove that
NDD(x,y) 3% + NDD(z, y) NDD(x,y) + NDD(z,y). Moving all
variables to the left side NDD(x,y)zg SDW — NDD(x,y) < 0= NDD

)[4 -
while 32Y
equal to zero.

(3) NDD(y,z) < NDD(x,y) + NDD(x,z): By distributivity we
have SD(y Uz) + SD(x) < SD(y Ux) + SD(z Ux). Subtracting [2SD(x)+

(y)] from both sides, and dividing both sides by SD(z) we obtain

SD(yUz)-SD(y) _ SD(x) - SD(yux)-SD(x) + SD(zux)-SD(x) _ SD(y) SD(yuz)—min(SD(y),SD(2))
SD(z) SD(z) = SD(z) SD(z) SD(z) max(SD(y),SD(z))

1} < 0. But NDD(x,y) is greater than or equal to zero,

< 0, thus their product will always be less than or

SD(zux)-min(SD(z),SD(x)) _ SD(y)
max(SD(z).SD(x)) SD(z)

SD(x) < SD(xuy)—min(SD(x),SD(y)) SD(y)

max(SD(x) SD(y)) SD(z) + =

NDD(x,z) — 35 < NDD(x,y) 5% + NDD(z,y) — 554 = NDD(x,2) <
NDD(x,y) gg% SDU’ )+ NDD(z, y) +3pe. We have to prove that
NDD(x,y) 554 — SDW) + NDD(z ¥) + 335 < NDD(x,y) + NDD(z,y) =
NDD(x,y) [ — 1] — £ + D& < 0 = NDD(x,) [245:22] < [24552].

Case 1: SD(y)=SD(z). NDD(x.y) [SD%;;D(Z)} < [SD%};(?“)] =
0<1- SDE’Z‘; = gg(") < 1 which is valid.

Case 2: SD(y) < SD(z).The fraction [%’é?(”} is less than zero, so
NDD(x,y) [SDWSD@} < [SDM( } = NDD(x,y) > [M] The

SD0)-SD(2)
fraction [%] is less than or equal to zero, because the numer-

ator is greater than or equal to zero and the denominator is less

than zero. Finally NDD(x,y) > 0 > [%].
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